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ABSTRACT 

We present an empirical evaluation of the utility of a systems perspective on measuring and 
modeling Situation Awareness (SA) in a laboratory simulation requiring submarine stealth 
judgments to be made in an uncertain task environment. Applying the model to a comparison of 
baseline versus perceptually augmented interface conditions revealed that augmentation had both 
positive and negative effects on SA (improving the consistency with which humans perceptually 
acquired information, while also increasing regression bias, suggesting that supporting reliable 
cue perception was accompanied by overly severe assessments made on the basis of these cues). 
The model was also used as the basis for a post-hoc diagnosis of the factors discriminating high 
and low performers. These factors were both the consistency of cue perception and the ability to 
consistently apply task knowledge, rather than the task knowledge per se. These findings help to 
verify the utility of a systems-oriented approach to measuring and modeling SA in interface-
mediated, uncertain environments. 

 
 



INTRODUCTION 

 In a companion article (Kirlik and Strauss, 2003), we presented a systems-oriented approach 
to modeling both the cognitive and environmental contributors to situation awareness (SA) in 
interface-mediated, uncertain tasks. The technique is based on early work in the psychology 
judgment, and more recent efforts, particularly in the weather forecasting literature, to create 
increasingly diagnostic measurements of achievement in uncertain contexts. Additionally, the 
technique is based on even more recent developments associated with complementing cognitive 
modeling not only with environmental modeling, but also with formal modeling of the 
technological contributions to SA achievement.  

 As we stated in the companion article, we do not believe that this technique touches on every 
dimension of SA. But at the same time, it may provide an important addition to the human 
factors toolbox in situations where important aspects of SA involve an operator’s ability to 
correctly infer the state or properties of a distal, uncertain environment on the basis of 
information available from a technological interface. To date, however, this technique has never 
been empirically evaluated in either psychology, forecasting, or human factors research. The 
goal of this article is to provide the first such evaluation of the utility of this systems, or 
ecological approach to SA modeling and measurement. We begin with a discussion of the 
laboratory task environment that served as the experimental context for this research. 

THE EXPERIMENTAL TASK 

 The experimental simulation created for this research, called SEXTENT, was developed over 
a three-year period with guidance from the U.S. Navy and The Johns Hopkins Applied Physics 
Laboratory.  In SEXTENT, the participant played the role of as a crewmember aboard a 
submarine, or ownship, and performed stealth missions (here, a mission is a single experimental 
trial).  Stealth was defined as the ownship being undetected by any other vessels in the tactical 
scene.  The participant's task was to quickly and accurately assess whether ownship’s presence 
had or had not been detected, on the basis of information presented on a situation display. 

Simulation Environment 

 Each mission was populated with objects including ownship and the three enemy vessels, or 
tracks, surrounding it.  Each track was described by three characteristics: (1) Its range (or 
distance) from ownship; (2) Its speed; and (3) Its absolute deviation in course relative to 
ownship.  Range and course deviation are illustrated in Figure 1.  Here, a track (the circle) is 
shown at an indeterminate range from ownship (the square) and with three course deviations 
(30o, 60o, and 90o).  Note that. regardless of a track's bearing, (i.e., its angular position relative to 
ownship), its course deviation is always positive and absolute.   
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Figure 1.  Geometrical Relationships Between a Track and Ownship. 

Required Judgments 

 For each of the three tracks in a mission, a participant was requested by the "captain" of 
ownship to make four judgments (i.e., 12 judgments are requested per mission).  The first three 
judgments concerned a track's characteristics.  The range (R), speed (S), and course deviation 
(CD) were first assessed for each track.  These track characteristics constitute the cues on which 
the participant based the fourth judgment: the probability that a track has detected ownship.  

The Tactical Situation Display 

 The tactical situation display graphically portrayed a mission.  In particular, the tactical scene 
graphically represented a mission's geographic boundaries, objects (i.e., tracks and ownship), and 
associated cues. A sample display is depicted in Figure 2.  Here, ownship, shown as a square, is 
depicted centrally and is flanked by three tracks,  shown as three circles with heading vectors. 
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Figure 2. Baseline SEXTENT  Situation Display 

 Track range (R) and course deviation (CD) cues are depicted on the situation display as 
shown in Figure 2. The speed of each track was presented as the length of the vector depicting 
the track's course.  The longer this arrow and the wider its head, the higher the track's speed. 
Situation Display Augmentation  

 A perceptually augmented SEXTENT display was also created.  The augmentation was 
graphical information intended to hopefully improve the perception of a track's characteristics, 
thus improving SA achievement. Figure 3 shows a situation display with three forms of 
perceptual augmentation: (1) A range ring, (2) A speed legend, and (3) a course deviation legend. 
The speed and course deviation legends are shown enlarged in Figure 4. The third form of 
augmentation, the range ring, was intended to support judgments of range (R), The ring had a 
radius of 60 NM centered on ownship.  Its right side was labeled as "60 NM." 
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Figure 3.  SEXTENT Situation Display with Perceptual Augmentation 

(a) (b)  

Figure 4.  The Speed (a) and Course Deviation (b) Legends from the Augmented Display. 

The SEXTENT Task: Formal Properties 

 The formal properties of the SEXTENT task environment were determined in part by sponsor 
input associated with representative ranges for each cue and representative directional (sign) 
relationships between each cue and the criterion (i.e., probability of ownship detection).  This 
information is summarized in Table 1 and Figure 5. Tab1e 1 indicates that each of the three cues 
was restricted to vary over a fixed range of values.  Figure 5 depicts the desired directional 
relationship between each cue and the criterion. 

4 



Table 1.  Cue Ranges 

Cue Lower Bound Upper Bound 

R 30 NM 120 NM 

S 5 kts 50 kts 

CD 0 degrees 90 degrees 

 

Speed Probability of
Detection

Range Probability of
Detection

Course
Deviation

Probability of
Detection

 

Figure 5. Directional relationships between cues and criterion. 

 As depicted in Figure 5, an increase in either R or CD translated into a decrease in the 
probability of detection.  Conversely, an increase in S translated into a increase in the probability 
of detection.  The design of these relationship reveals a three-way contingency—tracks with 
smaller ranges (i.e., closer to ownship), that maintained smaller course deviations (i.e., direct 
their courses toward ownship), and had higher speeds more likely had detected ownship. 

 Design of Cue-Criterion Relations:  When designing an experimental simulation to foster the 
transfer of research findings to a target operational environment, one should attempt to mimic the 
entire set of available cues, their ranges, and their cue-criterion correlations as they exist in the 
target context (Brunswik, 1956; Hammond and Stewart, 2001). In our case, however, input on 
the nature of the task was limited to the identification of the three cues described previously, and 
qualitative information on their sign-relationships to the criterion. This was not a limitation in 
this research, since the aim was to assess the utility of the systems-oriented approach to SA 
modeling and measurement, rather than to make discoveries about this particular, naval setting. 
We did, however, have to create a concrete realization of the task, and do so in a way that was 
consistent with the information we were provided about cue ranges and their sign-relationships. 

 To create a task environment preserving the desired sign relationships and cue ranges, we 
created a linear model which: a) preserved each individual cue’s directional relationship to the 
criterion; and b) over the range of cue values studied, resulted in a p(Detection) very near unity 
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when all three cue values maximally indicated detection, and resulted in a p(Detection) very near 
zero when all three cue values maximally indicated a lack of detection. The resulting function is 
shown in Equation 1, and has an R2 of unity.  Thus when given the three cue values, the 
environmental model perfectly predicts the criterion (in other words, the criterion, p(Detection), 
is perfectly predictable from the set of three displayed cues). 

P(Detection) = 0.7409+ (-0.0037 * R) + (0.007 * S) + (-0.0037 * CD ) Equation 1 

 Uncertainty:  Given the presence of uncertainty in many if not most operational contexts, 
including the stealth context in which this research was performed, it was necessary to include 
uncertainty as a component of the SEXTENT task environment. As such, Gaussian noise with a 
mean of 0 and a standard deviation of .08 was added to the model shown in Equation 1.  The 
addition of this noise reduced the R2 of the model to .8 and thus centered each calculated 
probability of detection in a 99% confidence interval (CI) bound by ± 0.24 percentage points (3 
standard deviations).  For example, the addition of noise centered a true probability of detection 
equal to .7 on a 99% CI with a lower and upper bound of .46 and .94, respectively. Within each 
SEXTENT mission, the state of each track was independently and randomly generated by 
uniform sampling of the cue intervals defined in Table 1.  

 By precluding cue intercorrelations in this manner, we hoped that participants would be 
induced to attend to all three cues when making their assessments of the p(Detection). Naturally, 
if an operational context is characterized by redundancy (i.e., non-zero cue intercorrelations), 
these should be preserved in simulation-based research to foster the transfer of findings to the 
target context. But again, the aim of this research was evaluating the utility of an SA modeling 
and measurement technique, so there was no constraint to create any particular cue structures. 

EXPERIMENTAL DESIGN 

 Our primary experimental goal was to create a set of data that could be used to assess whether 
the systems-oriented SA modeling and measurement technique could provide useful resources 
for diagnosing the factors contributing to variance in SA achievement in an interface-mediated, 
uncertain task. Although many possible types of variance could conceivably have been studied, 
in this research we focused on two sources: a) predicted variance in SA due to the use of both a 
baseline and a perceptually augmented situation display; and b) a post-hoc analysis of variance in 
SA achievement between highest and lowest scoring experimental participants.  

 Our logic was that by analyzing the first (display-induced) source of variance, we would be in 
a position to determine the degree to which the modeling and measurement technique could be 
used to diagnose how a design intervention may influence SA. Analogously, our purpose in 
analyzing the second (performer-specific) source of variance was to put us in a position to assess 
the degree to which the technique could be used to diagnose the sources of individual differences 
in SA achievement in this task. If successful, this performer-specific analysis of variance in SA 
could have implications for the design of training interventions targeted to the specific aspects of 
an individual trainee’s performance that may be contributing to less than successful levels of SA. 
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Participants 

 Sixteen participants, ten men and six women, were recruited from a university student 
population.  Each participant was randomly assigned to either the Group Baseline (GBL) display 
condition or to the Group Display Augmentation (GDA) display condition, resulting in a total of 
eight participants in each display group. For their participation, 14 of these participants were 
given course credit. The remaining two participants were paid an hourly rate.  All participants 
had normal or corrected-to-normal vision.  As an incentive, participants were informed that a 
cash prize of U.S. $50.00 would be awarded to the highest performer in each display condition. 

Procedure 

 The first day for each participant was devoted to training.  Here, each participant performed 
ten missions, each requiring three tracks to be judged. appropriate to his or her experimental 
group (i.e., either GBL or GDA).  For the next eight days, participants performed 20 SEXTENT 
missions per day, again, each mission requiring three tracks to be judged. Over this eight-day 
period, this design resulted in a total 160 missions and thus 1,920 judgments per participant (160 
missions X 3 tracks/mission X 4 judgments/track).  For each participant, the order in which the 
missions were performed was randomly determined. Missions differed only in terms of the 
random number seed used to generate track profiles according to the environmental model. 

 Mission Timeline:  At the start of each mission, two events occurred: (1) The tactical scene 
and an information panel were rendered on the main display; and (2) a Timer began to count the 
number of seconds since mission start. The information panel, located just to the right of 
SEXTENT’s situation display, is shown in Figure 6. The panel was used to notify participants 
when judgments were required and to provide them with a mechanism to submit their judgments, 
submit these judgments, the participant pressed a green Confirm button. 
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Figure 6.  GT SEXTENT's Information Panel. 

 Three seconds after commencement, the Status Area in the information panel turned red and 
the captain's request for judgments appeared. Upon receipt of the request, a participant could 
begin judging any track.  To initiate judgment, the participant first selected a track with a mouse.  
This selection had three concurrent effects.  First, the selected track was highlighted in red.  
Second, the selected track's identifying information was posted to the Track Information Area.  
Third, the four fields in the Judgment Area (see Figure 6) were activated, thus turning them 
white and permitting the submission of judgments (prior to selection, these fields were 
inaccessible).  After activation, the participant used the keyboard to enter the four judgments 
(range, speed, course deviation, and probability of detection) into the four fields.  Finally, to 
submit these assessments, the participant pressed a green Confirm button.  

 Feedback: After judgments had been properly submitted for a track, they had been checked 
for illegal characters, and the "Confirm" button had been pressed, participants were given track-
specific feedback.  This was provided in the Feedback area of the information panel (see Figure 
6). For training missions during the first day of the experiment, participants were provided with 
Nine-bar Feedback. This is shown in the Feedback Area of the information panel on the left side 
of Figure 7.  Here, four pairs of bars were shown above a single bar.  The top three pairs 
provided feedback on a participant's judgments of a track's cues (R, S, and CD); the fourth pair 
provided feedback on the judgment of a track's p(Detection), and the single bar indicated the 
judgment time.  Each bar was suffixed with a numerical value depicting the bar's length. 
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Figure 7.  Nine-Bar (Day 1) and Three-Bar (Day 2-9) Feedback. 

For each of the four pairs, the first bar depicted the true value of the cue or criterion being 
judged.  The second bar depicted the participant's judgment.  The "true state" bars were relatively 
darker in color, and their numerical values were marked with a "(T)."   

 For the 8 days of missions after the first training day, participants were provided with a 
reduced form of feedback called Three-bar Feedback. Three-bar feedback is depicted on the 
right side of Figure 7, where it can be seen to be a subset of the Nine-bar feedback used for 
initial training.  This subset included only feedback on the submitted probability of detection 
(i.e., the criterion) and the time required to enter the four judgments.  For more complete 
information on the SEXTENT task and the experimental design, see Strauss (2000). 

 SA MODELING AND PERFORMANCE MEASUREMENT 

 The systems-oriented SA measurement and modeling approach described in the companion 
article (Kirlik and Strauss, 2003) was used for performance modeling and measurement. In 
addition, knowledge of the detailed structure of the SEXTENT experimental task was used to 
tailor and refine the general model to provide a task-specific application of the model to the 
structural details particular task environment studied.  
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Task-Specific Application of the Modeling and Measurement Technique 

 Overall participant performance in SA achievement was measured using Murphy’s (1988) 
Skill Score (SS), which, as shown in the companion article, can be decomposed as in Equation 2: 
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Equation 2 

For this initial empirical evaluation of the SA measurement and modeling technique, we did not 
choose to vary the environmental factor listed as item 2 in the above equation, that is, the 
Fidelity of the Information System.  As such, and as indicated by shading out item 2 in Table 2, 
we focused on only six of the seven parameters included in Equation 2 above.  

Table 2.  The seven components of the Expanded Lens Model 

ELM Component Name 

 SS Skill Score 

(1) RO.T Environmental Predictability 
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 We naturally could have designed the experimental task with varying levels of technological 
fidelity, but this would have extended the scope of this work beyond merely the study of SA and 
display design, and also into the realm of human-automation interaction (HAI) (Parasuraman, 
Sheridan and Wickens, 2000). Hopefully, though, Equation 2 makes clear how technological 
fidelity, or “Stage 2 Automation,” contributes to the theoretically attainable levels of SA. 

Due to focusing the study in this manner, the way in which our “reduced,” task-specific model 
of SA differs from the full model in the companion article can be readily seen in Figure 8. 

10 



Primary
Cues

Secondary
CuesDescriptors

Y

T UX

O

Situation Operator

Y

Primary
Cues

Secondary
Cues

UX

O

Situation Operator

Full ELM Reduced ELM  

Figure 8. The original and reduced, SEXTENT-specific models of SA achievement. 

 In other cases, however, we were able to exploit knowledge of the experimental task to create 
additional measures representing contributions to overall SA achievement. In addition to the 
seven dependent variables listed in Table 2, five supplemental, model-derived, performance 
measures were computed, as shown in Table 3. 

Table 3.  Supplemental Dependent Variables 

Additional Measures Name 

(8) rYO Achievement 

(9) RO.U Secondary Environmental Predictability 

(10) VUX Range Consistency of Cue Acquisition (Range) 

(11) VUX Course Deviation  Consistency of Cue Acquisition (Course 
Deviation) 

(12) VUX Speed Consistency of Cue Acquisition (Speed) 

  

 In Table 3, Achievement (8) is the traditional lens model achievement measure based on the 
correlation between a participant's judgments and the environmental criterion.  Moreover, recall 
that this measure insensitive to differences in both magnitude and scale. However, when 
compared to the value of the more sensitive Skill Score (SS) measure, it does provide a quick 
way to gauge the relative contributions of both base rate bias and regression bias to overall SA 
achievement. Secondary Environmental Predictability (9) is a measure fashioned after 
Environmental Predictability (1).  Yet unlike (1), which results from correlating the primary cues 
with the criterion, Secondary Environmental Predictability results from correlating the secondary 
cues, or participant's judgments of the cue values, with the criterion.  Measure 9 thus provides a 
measure of the environment's predictability based on the participants perception of the situation, 
rather than based on the situational cues themselves.  Its basis in the ELM is depicted in Figure 9.  
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Figure 9.  The grounding of Secondary Environmental Predictability (RO.U). 

Measures (10), (11), and (12) in Table 3 were fashioned after Consistency of Information 
Acquisition, or VU.X (4, from Table 2).  Recall that VU.X measures the degree to which a 
correlation between a participant's judgments of the cues (i.e., the secondary cues) and criterion 
corresponds to a correlation between the primary cues and a participant's judgments of the 
criterion.  The mathematical form of VU.X is shown in Equation 3. 

X.UU.Y
U.Y

X.Y
U.YX.Y VRR

RRR =




=  Equation 3 

Equation 3 depicts VU.X as the ratio of Consistency (RY.X) to Consistency of Information 
Processing (RY.U).  Here, the performance of a participant whose judgments of the criterion were 
better predicted by the secondary than the primary cues would translate to a RY.U that was greater 
than RY.X and thus a VU.X that was less than one.  For example, if the correlation judgments of the 
experimental cues (R, S, and CD) and judgments of the probability of detection was .9 (RY.U), yet 
the correlation between the true values of the cues and judgments of the probability of detection 
was .75 (RY.X), then RY.U would be less than RY.X and VU.X would be less than unity. 

 When multiple cues exist, the calculations underlying VU.X are based on multiple correlations, 
and thus provide a relatively gross perspective on information acquisition.  In contrast, the 
detailed measures of Consistency of Cue Acquisition (measures 10-12 in Table 3) are based on 
single cues, and thus bivariate correlations.  By measuring these simpler relationships, the 
consistency with which a single cue is perceived can be measured, and thus the contributions of 
both a primary and a secondary cue to SA achievement can be diagnosed. Note that none of the 
supplemental measures is articulated in the original model of SA achievement.  The resources for 
creating these measures, however, are readily provided by the structure of that model, and thus 
indicate how the general framework for SA modeling and measurement can be extended and 
tailored to examine task-specific aspects of performance in particular environmental situations. 
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Statistical Analysis, Parameter Estimation, and Hypothesis Testing 

 Other than the Skill Score (SS) measure of overall SA achievement, every one of the 
measures listed in Tables 2 and 3 are correlations, and were thus adjusted for normality using 
Fisher’s r to zr transformation to support statistical analysis and testing (see Cooksey, 1996). All 
such measures were transformed back to r values for reporting in the following. MANOVA 
techniques reflecting the nested-factorial design (participants nested within display group) of the 
experiment were the primary basis for hypothesis testing, using MANOVA-integrated techniques 
for adjusting alpha levels as a function of the number of hypotheses tested (e.g., the multiple 
performance measures), as opposed to using an separate adjustment such a Bonferroni technique. 
However, the use of MANOVA techniques were supplemented with non-parametric testing 
where graphing indicated that transformed statistics clearly did not display normality.  

EXPERIMENTAL RESULTS 

 The first day of training, which occurred on a Monday, was excluded from the analysis. The 
following four days of experimentation occurred during the following Tuesday through Friday, 
and the remaining four days of experimentation occurred the following Monday through 
Thursday. Since our goal was not to examine learning in the task, but instead stable performance 
after participants had learned the task, we present data from only the final four sessions of data 
collection. Readers interested in the complete set of analyses over all sessions should see Strauss 
(2000). In addition, we focus our presentation of results solely on the overall measure of SA 
achievement (SS), and those measures indicating statistically significant differences between 
either the two display groups, or between the two, highest and lowest scoring participants. 

 Results Indicating Learning, and Stability Over the Final Four Sessions: Testing indicated 
that over the final four days of the experiment, there was no effect of either day (block), or block 
X display group, on SA achievement as measured by SS. This finding supported the conclusion 
that participants had achieved stable levels of performance by this stage of the experiment. This 
result was clearly not due to the fact that participants did not learn to perform the task, as the 
mean SS of 0.3531 over both display groups in even the initial four experimental sessions was 
significantly greater than zero (H0: SS  0; H1: SS > 0; T127 17.86, p < .0001), where zero SS 
indicates chance performance. By the final four sessions of the experiment, this mean SS across 
the two display groups had risen from 0.3531 to .4432, supporting our decision to focus on only 
the final four sessions, as participants were still learning the task up to that point. This latter 
finding provides additional evidence that participants indeed benefited from task experience. 

 Baseline Versus Augmented Displays: Somewhat surprisingly, we found no significant 
difference between the GBL and GDA groups in terms of overall SA achievement as measured 
by SS over the final four experimental sessions (Mean GBL SS = 0.4545; Mean GDA SS = 
.4319; F(1,14) = 0.1945, p = 0.6659). Based solely on this molar performance measure, it would 
be natural to conclude that perceptual augmentation had no influence on SA performance in this 
task. However, decomposing this molar measure of performance using the systems-oriented 
modeling and measurement technique resulted in a quite different set of conclusions. 

 A detailed analysis of display group differences indicated that the perceptually augmented 
display actually significantly increased some aspects of performance, while significantly 
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decreasing another aspect, resulting in an canceling-out effect on overall SA achievement. 
 Specifically, we found a significant difference between display groups on the measure of 
Secondary Environmental Predictability, or RO.U (Table 3, Measure 9). Specifically, Mean GBL 
RO.U = 0.856; Mean GDA RO.U = .876; F(1,14) = 6.09, p = .027. This difference suggests that the 
availability of perceptual augmentation benefited the GDA group modestly, but reliably. In 
particular, augmentation resulted in increased correlations between GDA participants perceptions 
of the environmental cues with the actual task criterion. Said another way, given the task of 
predicting the criterion, i.e., p[Detection), one would be significantly more accurate basing this 
assessment on the GDA participants’ perceptions of the cue values, than on the GBL participants 
perceptions of the cue values. In short, the GDA participants’ perceptions of the cues were more 
veridical and informative than GBL participants’ perceptions. A submarine captain, for example, 
would likely do better by heeding the situational assessments (based on cue perception) of the 
GDA participants, rather than the situational assessments of the GBL participants, in making his 
or her own subsequent judgment of the probability that his or her submarine had been detected. 

 Why, then, did the GDA participants not outperform the GBL participants on the SS measure 
of SA achievement? Interestingly, the modeling technique indicated that on one measure, the 
GBL participants outperformed the GDA participants. Specifically, when examining the data 
supporting the calculation of Regression Bias (Table 2, Measure 6), we found that these data 
were clearly inconsistent with the normality assumption underlying parametric testing. We 
therefore performed a non-parametric Kruskal-Wallis test, indicating that the GBL participants 
had a significantly lower Regression Bias than the GDA participants (GBL Regression Bias 
median = .025; GDA Regression Bias median = .037; H(1) = 5.02, p  0.025). Recall that a 
regression bias manifests itself as a distribution of judgments of the task criterion over either too 
narrow or too broad a range (standard deviation), as compared to the standard deviation of the 
criterion distribution itself. These data indicate that the GDA participants displayed a regression 
bias [(.037 - .025)/.025] = 48% greater than did GBL participants. GDA participants rendered 
more severe p(Detection) estimates, in both high and low directions, than the GBL participants.  

 Statistically-speaking, the benefits and costs of the augmented display cancelled out, resulting 
in no overall difference in SA achievement. However tempting it may be, we clearly cannot 
conclude there is a definite causal link between the observed benefits and costs associated with 
display augmentation. We note, however, that other researchers have reported that display 
interventions using attentional cueing do improve the processing of cued information at the 
expense of uncued information (e.g., Yeh, Wickens and Seagull, 1999; Yeh and Wickens, 2001). 
In the present case, the “uncued” information was not other displayed information, but rather 
experientially-acquired knowledge of the distribution of actual criterion values characterizing the 
task ecology, information provided to participants after each trial on the feedback display. 

Diagnosing the Differences Between High and Low Performers 

 In nearly all the statistical tests performed on both overall SA achievement (SS), and the set of 
model-derived performance measures, the “participant” factor was found to be significant. For 
example, in the four sessions on which we focused our analysis, MANOVA revealed a highly 
significant effect of SS across all 16 participants (F(14,42) = 3.08, p = .0024). Such findings are 
typical in studies of human judgment in a wide variety of uncertain task domains, prompting 
Brehmer and Brehmer (1988) to conclude that “All studies of policy capturing [judgment 
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modeling and measurement] demonstrate there are wide individual differences . . . .” (p. 103). 

 Given this general finding, supported by our own experimental results, we decided to see if 
the systems-oriented approach to SA modeling and measurement could be used, in a post-hoc 
manner, to shed light on the factors that may have distinguished the highest and lowest scoring 
performers in the SEXTENT task. We note that selecting these two performers in a post-hoc 
fashion is not consistent with the assumptions of standard hypothesis testing for the purpose of 
making generalizable claims about differences between classes of “high performers” and “low 
performers” in the SEXTENT task.  As such, we explicitly do not intend the following results to 
be interpreted in this manner.  

 To minimize any potential for misunderstanding on this point, in the following analysis, we 
report statistical ratios but no explicit p values, which might prompt the reader to assume we 
intend our results to represent general conclusions about “high performers” versus “low 
performers” in SEXTENT. On the contrary, the following analysis had the goal of trying to 
understand the possible reasons why these two particular (high and low) performers may have 
differed in overall SA achievement. Although limited in this sense, we do believe that modeling 
and measurement tools supporting such analyses can play an important role, especially when 
creating performer-specific hypotheses about the particular elements of an overall task that 
should be targeted by individualized, performer-specific, training interventions. 

 Participant Differences in Overall SA Achievement: Both high and low scoring participants, 
who we will refer to as PH and PL respectively, came from the GBL display group. The mean SS 
values for PH and PL were 0.594 and 0.255, which resulted in an F(1,18) ratio of 18.49. Since 
SS is grounded in the absolute Euclidean difference between observed data sets, we can consider 
SS to be on a ratio-type scale, as a zero value for SS has a non-arbitrary meaning (SS = 0 implies 
chance performance). As such, it is reasonable in this context to say that PH performed the task 
at least twice as well (0.594 versus 0.255) as PL, a striking difference in overall SA achievement. 

 Diagnosing the Sources of High and Low SA Achievement:  One can represent the model 
presented in Equation 2 and the performance measures presented in Tables 2 and 3 in pictorial 
form, indicating the successive decomposition of the SS measure into its contributing 
components. Such a pictorial representation is shown in Figure 10.   
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Figure 10. Pictorial Depiction of SS Decomposition 

The dotted box labeled “LME” indicates the scope of the traditional lens model equation. To keep 
the complexity of the figure, and the scope of the analysis, manageable, we have omitted the 
manner in which the VU.X measure of Consistency of Cue Acquisition (see Table 2) can 
additionally be decomposed into the three, cue-specific acquisition measures. 

 Figure 10 provides a conceptual schema depicting the manner in which we proceeded to 
diagnose the contributors to the difference between SA achievement displayed by PH and PL. 
We already knew that these two performs differed strongly in terms of the top element in Figure 
10, namely, in SS. Our task was then to move down the diagram shown in Figure 10 to diagnose 
what factors may have contributed to this molar difference. 

 Readers interested in the full details of the analysis should see Strauss (2000). Here, for 
brevity, we simply summarize the conclusions of the analysis, in pictorial form akin to that 
presented in Figure 10. Figure 11 shows the results of the analysis by bolding the performance 
measures on which statistical F ratios indicated that PH and PL differed.  
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Figure 11. Results of the Analysis of Differences Between High and Low Performers 

 Note from Figure 11 that we were initially able to rule out both Conditional (Regression) and 
Unconditional (Base-Rate) biases as a potential source of SA achievement differences between 
PH and PL. This focused our attention on the correlation-based, lens model measure of 
achievement, or rYO. (Mean PH rYO = .816; Mean PL rYO = .605; F(1,18) = 28.3).  At this point, 
we found no differences between PH and PL on the Environmental Predictability measure (RO.T), 
nor on the Task Knowledge or cue-weighting measure (G, which was very high for both PH and 
PL, .985 and .964 respectively). However, we did find a difference between PH and PL in terms 
of Consistency of Information Processing, or RY,X (Mean PH RY,X = .925; Mean PL RY,X = .727; 
F(1,18) = 56.07). As shown in Figure 11, we were able to attribute this difference to both a 
relatively moderate effect of Consistency of Information Acquisition, or VU,X (Mean PH VU,X = 
1.00; Mean PL VU,X  .950; F(1,18) = 8.93) and a relatively larger effect of Consistency of 
Information Processing, or RY,U (Mean PH RY,U = .927; Mean PL RY,U = .766; F(1,18) = 30.66). 

 In summary, the systems-oriented approach to SA modeling and measurement allowed us to 
diagnose and isolate the relatively large, two-to-one, difference in SA achievement between PH 
and PL to primarily the higher consistency with which PH was able to assess situations based on 
knowledge of the regularities of the task environment (cue weighting patterns), and to a lesser 
extent, the higher consistency in perceptually assessing environmental cues. Notably, this finding 
is consistent with that of Bisantz, Kirlik, Gay, Phipps, Walker and Fisk (2000), who similarly 
found that the primary difference between high and low scoring participants in their naval, 
combat information center, tactical judgment task was due to the ability of participants to 
consistently execute their judgment strategies in accord with task knowledge under time stress, 
rather than to differing levels of task knowledge itself. 
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CONCLUSIONS 

 In this article we have presented the results of modeling and measuring a phenomenon we 
believe to lie at the crux of situation awareness in a wide variety task situations of interest to 
human factors and cognitive engineering: human judgment under uncertainty in conditions 
where judgment is mediated by a technological interface. We have demonstrated the utility of a 
systems, or ecological approach to modeling SA in such contexts, by showing that the model and 
its associated measures provided a highly diagnostic tool for isolating the effects on SA 
achievement owing to both interface design interventions (a perceptually augmented situation 
display) and also individual differences (between high and low performers in the experimental 
task). In addition, we have shown that the results of these two applications of the modeling and 
measurement framework complement what little is already known about these phenomena. 

 In closing, we would like to address an issue which experience has taught us can potentially 
limit the acceptance, and thus the impact, of any modeling approach following in the historical 
tradition of Brunswik’s probabilistic functionalism (Brunswik, 1956). This issue is the view that 
the regression-based modeling of cognition and the environment underlying the present approach 
is not consistent with more recent theories of perception or cognition.  

 On this matter, it is crucial to note that once the relevant environmental cues and criterion are 
identified, the assumption that a human is using a linear-additive policy for cue weighting and 
integration, while often appropriate (Brehmer and Brehmer, 1988; Hammond and Stewart, 
2001), is hardly required by a systems-oriented, ecological perspective, nor does it rule out other 
theoretical accounts of SA. For example, to the extent that SA is relatively “direct” in the sense 
of Gibson (1979), and perhaps keyed tightly to a single cue or “invariant” (e.g., Smith and 
Hancock, 1995), this fact will fall out of regression modeling, given that the researcher has done 
a good job at identifying all the available sources of perceptual information (for an illustrative 
example, see Bisantz and Pritchett, in press).  

 Additionally, techniques other than regression can be used to model cue-criterion relations 
without sacrificing the benefits of adopting a systems-oriented perspective to SA measurement 
(Kirlik and Maruyama, in press). To illustrate, Campbell, Buff and Bolton (2000) described cue-
criterion relations with fuzzy rules, Rothrock and Kirlik (in press) have modeled these relations 
with noncompensatory (if/then/and/or/not) rules, and Kirlik (1998) has modeled these relations 
using entropy-based, rather than regression-based techniques. All that is required to implement a 
systems approach to SA measurement is the availability of models for making predictions of the 
criterion and human assessments on the basis of cue information. The statistical calculations for 
estimating the many SA performance measures described in this article operate solely on cue 
values and model outputs, and are thus largely unaffected by the style of modeling used to 
describe the process by which perceptual cues are translated into levels of SA achievement. 

 With this said, we hope other human factors and cognitive engineering researchers continue to 
amend and extend the techniques presented here. Such advancements would provide even more 
useful methods for measuring, and thus understanding and supporting, situation awareness in 
human-technology interaction. 
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